M.Tech. Degree Examination, January 2011

Digital Circuits and Logic Design

Time: 3 hrs. Note: Answer any FIVE full questions. Max. Marks:100

Consider the type of threshold function for which all the weights are equal, that is 1 $w_1 = w_2 = \dots = w_n$. In particular, those $f(x_1, x_2, \dots, x_n)$ for which,

$$f(x_1, x_2, ..., x_n) = 1$$
 if and only if $\sum_{i=1}^{n} x_i \ge T_w$

$$f(x_1, x_2, ... x_n) = 0$$
 if and only if $\sum_{i=1}^n x_i < T_w$.

Determine the value of f when : i) $T_w = 0$ ii) $T_w > n$ iii) $0 < T_w < n$

b. Find the function $f(x_1, x_2, x_3, x_4)$ realized by the threshold network shown in Fig.Q1(b). Show the map.

c. Determine whether the following function is unite or not. Obtain a single / two-element realization.

$$f(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4) = \sum (0, 3, 4, 5, 6, 7, 8, 11, 12, 15)$$
 (10 Marks)

- Given the fault table shown Table.Q2(a) where f denotes the fault-free output.
 - Find the minimal set of tests to detect all single faults.
 - Find preset set of tests to locate all single faults and show the corresponding fault ii) (10 Marks) dictionary.

у.							
Faults Test	f	$\mathbf{f_1}$	f_2	\mathbf{f}_3	f ₄	f ₅	f_6
T_1	1	1		1			11
T ₂	0	1					1
T_3	1		1	1			
T ₄	0				1	11	
T ₅	1	1		1		1	
T ₆	0					1	1_

Table.Q2(a)

(10 Marks)

- Define Boolean differences. Derive the different properties of Boolean differences. (08 Marks)
- Show that the combinational circuit $Y = A\overline{B} + BD$ having hazards. (02 Marks)
- For the circuit of Fig.Q3(a), 3
 - Find all the tests to detect input A' s a O by using the sensitized path approach. i)
 - Show all the single faults that can be detected by the test (A B C E) = $(1 \ 1 \ 1)$. ii)

b. Find the minimal set of test for multiple faults for the two level OR - AND network shown in Fig.Q3(b).
 (06 Marks)

- c. Prove that every two level OR AND network N_1 has an equivalent AND OR network N_2 such that the inputs of N_2 are complements of the inputs N_1 . (04 Marks)
- 4 a. For the machine M1 in Table.Q4(a), find the equivalence partition and a corresponding reduced machine in the standard form. Find a minimum length sequence that distinguishes state A from state B. (10 Marks)

PS	NS, Z		
13	$\mathbf{x} = 0$	x = 1	
Α	B , 1	Н, 1	
В	F , 1	D, 1	
C	D, 0	E, 1	
D	C , 0	F, 1	
E	D, 1	C, 1	
F	C , 1	C, 1	
G	C, 1	D, 1	
Н	C, 0	A , 1	
T	Table.Q4(a)		

PS	NS, Z			
FS	I_1	I_2	I_3	
Α	C, 0	E, 1	_	
В	C, 0	E, 1		
C	В, –	C, 0	A, -	
D	B, 0	C, -	É, –	
Е	_	E, 0	A, –	
Table.Q4(b)				

- b. For the incompletely specified machine shown in Table.Q4(b), find a minimum-state reduced machine containing the original one. (10 Marks)
- 5 a. Obtain the merger table for the machine shown in Table.Q5(a). Give the computability graph and a minimal machine which covers the machine M3. (10 Marks)

PS	NS, Z		
rs	I ₁	I_2	
Α	E, 0	B, 0	
В	F, 0	A, 0	
C	E, -	C, 0	
D	F, 1	D, 0	
Е	C, 1	C, 0	
F	D, -	B, 0	

Table.Q5(a)

PS	NS		
13	x = 0	x = 1	
Α	Е	В	
В	Е	Α	
C	D	A	
D	C F	F	
E	F	C C	
F	Е	C	

Table.Q5(b)

- b. For the machine M4 given in Table.Q5(b), determine the π lattice.
- (06 Marks)

- c. Define: i) input-consistent
- ii) Output-consistent with respect to machines, and explain.

(04 Marks)

- 6 a. In the following set of partitions, π_1 and π_2 designate the closed partitions, while λ_0 and λ_1 designate the output-consistent and input consistent partitions.
 - i) Construct the π lattice by obtaining all the necessary sum of products.
 - ii) Show the schematic diagrams showing the possible decomposition that yield minimal inter dependencies of the state variables as well as the outputs.

$$\pi_1 = \{\overline{A,B,E,F}; \overline{C,D,G,H}\} \qquad \lambda_0 = \{\overline{A,B,G,H}; \overline{C,D,E,F}\}$$

$$\pi_2 = \{\overline{A,F,C,H}; \overline{B,D,E,G}\} \qquad \lambda_i = \{\overline{A,C}; \overline{B,D}; \overline{E,G}; \overline{F,H}\} \qquad (10 \text{ Marks})$$

6 b. For the machine shown in Table.Q6(b), obtain a serial decomposition.

(10 Marks)

PS	NS			
13	$\mathbf{x} = 0$	x = 1	Z	
Α	G	D	1	
В	Н	C	0	
C	F	G	1	
D	Е	G	0	
Е	C	В	1	
F	C	Α	0	
G	Α	Е	1	
Н	В	F	0	

$$\begin{split} &\pi_0 = \pi(0) \\ &\pi_a = \{\overline{A,B,G,H}\,; \overline{C,D,E,F}\} \\ &\pi_b = \{\overline{A,B}\,; \overline{C,D}\,; \overline{E,F}; \overline{G,H}\} \\ &\lambda_0 = \{\overline{A,C,E,G}\,; \overline{B,D,F,H}\} \end{split}$$

7 a. Explain the Homing experiments, with examples.

(10 Marks)

b. Explain the adaptive distinguishing experiment by considering the machine shown in Table.Q7(b). (10 Marks)

PS	NS, Z		
13	x = 0	x = 1	
Α	C, 0	A, 1	
В	D, 0	C, 1	
C	B, 1	D, 1	
D	C, 1	A, 0	

Table.Q7(b)

8 a. Design a fault detection experiment for the machine shown in Table.Q8(a), by conducting adaptive and preset experiments. (10 Marks)

PS	NS, Z		
гэ	x = 0	x = 1	
Α	B, 0	C, 1	
В	C, 0	D, 0	
С	D, 1	C, 1	
D	A, 1	B, 0	

Table.Q8(a)

b. Explain the general procedure for the fault detection experiment for the machine that has a distinguishable sequence with repeated symbols. Apply the same to the machine shown in Table.Q8(b). (10 Marks)

PS	NS, ZZ_1		
rs	$\mathbf{x} = 0$	x = 1	
A	B, 01	D, 00	
В	A, 00	B, 00	
C	D, 10	A, 01	
D	D, 11	C, 01	

Table.Q8(b)

* * * * *